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Abstract

We present a dual Kalman Filter (KF) approach for retrieving states and parameters
controlling soil water dynamics in a homogenous soil column by using near-surface
state observations. The dual Kalman filter couples a standard KF algorithm for re-
trieving the states and an unscented KF algorithm for retrieving the parameters. We5

examine the performance of the dual Kalman Filter applied to two alternative state-
space formulations of the Richards equation, respectively differentiated by the type of
variable employed for representing the states: either the soil water content (θ) or the
soil matric pressure head (h). We use a synthetic time-series series of true states and
noise corrupted observations and a synthetic time-series of meteorological forcing. The10

performance analyses account for the effect of the input parameters, the observation
depth and the assimilation frequency as well as the relationship between the retrieved
states and the assimilated variables. We show that the identifiability of the parameters
is strongly conditioned by several factors, such as the initial guess of the unknown pa-
rameters, the wet or dry range of the retrieved states, the boundary conditions, as well15

as the form (h-based or θ-based) of the state-space formulation. State identifiability is
instead efficient even with a relatively coarse time-resolution of the assimilated obser-
vation. The accuracy of the retrieved states exhibits limited sensitivity to the observation
depth and the assimilation frequency.

1 Introduction20

Retrieving soil water dynamics successfully requires mathematical models that include
a proper specification of soil hydraulic parameters as function of variables characteriz-
ing the state of the water in the soil (e.g. Heathman et al., 2003; de Lannoy et al., 2007;
Vereecken et al., 2008).

Soil water dynamics is commonly modelled with the Richards equation (Richards,25

1931), which implements nonlinear relationships between the volumetric soil water
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content, θ [L3 L−3], the matric pressure head, h [L], and the hydraulic conductivity,
K [L T−1], defined by the water retention, θ(h), and the hydraulic conductivity, K (θ),
functions. However, the assessment of these soil hydraulic functions is subjected to
high costs in terms of both labour and time needed for their determination, not only
in case of direct measurements but also when indirect methods are applied (Chirico5

et al., 2007). Particularly for applications over relatively large land areas, significant
uncertainties arise from the spatial variability of these hydraulic functions. However,
reliable process-based hydrological modelling has highlighted the need to deal with
spatial variability issues, as they exert a significant influence on the exchange of water
fluxes between the different parts of the system (Chirico et al., 2010). The variability10

is significant at all scales of interest, making it extremely difficult to capture the hydro-
logical behaviour at one particular scale (Pringle et al., 2007; Nasta et al., 2009). As
a result, the parameterization of the soil hydraulic functions is considered one of the
main challenges in the current land surface modelling efforts (Zhu and Mohanty, 2004).

The majority of data assimilation studies have focused on retrieving hydrological15

model states (e.g. soil moisture), while assuming that model parameters are to be
specified in advance. There are only few attempts to assimilate near-surface observa-
tions for simultaneous retrieval of soil moisture profiles and soil hydraulic parameters.

Common sequential data assimilation methods are based on Kalman filtering, from
the pioneering work of Kalman (1960). Although the standard Kalman Filter (SKF) was20

originally formulated for an optimal recursive solution of linear dynamic models with
Gaussian random errors, more recent non-standard Kalman Filters extensions have
successfully increased the capabilities to deal with a wider spectrum of nonlinear sys-
tems. In particular, those coping with the sequential probabilistic inference problem
within nonlinear dynamic systems have experienced considerable progress.25

The two most used non-standard Kalman Filters in vadose zone hydrology are the
Extended Kalman Filter (EKF) and the Ensemble Kalman Filter (EnKF) (Vereecken et
al., 2008). Moradkhani et al. (2005) provided a general framework about the capabilities
of a dual EnKF algorithm for streamflow forecasting. Recent studies have been focused
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on dual applications using particle filter methods (Qin et al., 2009; Yang et al., 2009;
Monztka et al., 2011), another assimilation algorithm that has also gained considerable
attention.

The Unscented Kalman Filter (UKF) (Julier et al., 1995; Julier and Uhlman, 1997; van
de Merwe, 2004) is a novel, accurate and theoretically well motivated algorithm that5

has been less applied in hydrological studies. These authors have shown how the UKF
consistently outperforms the EKF in terms of estimation accuracy and consistency, at
the expenses of the same computational costs. The UKF is based on a deterministic
replication of the mean predicted variable for the calculation of the optimal terms in
the Gaussian approximate Bayesian update. Gove and Hollinger (2006) applied a dual10

UKF for the assimilation of net CO2 exchange data in a simple physiological model.
Also Tian et al. (2008) used this method for reproducing the temporal evolution of daily
soil moisture under freezing conditions by assimilating satellite observations.

Most of the cited dual KF applications have in common the fact that they employ the
same KF scheme for sequentially estimating both states and parameters (e.g. EKF,15

UKF, etc.).
Chirico et al. (2012) showed that state retrieval can take advantage from a finite

differentiation of the Richards equation based on the Crank-Nicolson linear numerical
scheme, which can be coupled with a standard KF (SKF) algorithm much more effi-
ciently than a non-linear numerical scheme coupled with a non-standard KF algorithm.20

The study also showed that UKF is more efficient than EKF when one has to deal with
the typical nonlinearity of the soil hydraulic property functions. Therefore, the present
study suggests dual Kalman Filter approach combining a SKF for an optimal retrieval of
the states, while limiting the application of an approximate UKF only for the sequential
update of the parameters characterizing the soil hydraulic properties.25

The first objective of this study is to illustrate the performance of the dual Kalman Fil-
ter approach based on the standard retrieving of the states and the unscented retriev-
ing of soil hydraulic parameters, by assimilating near-surface soil moisture information
in a one-dimensional Richards’ equation using synthetic data. A second objective is to
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comparatively assess the potential advantageous and limitations attached to the imple-
mentation of an h-based or a θ-based form of the Richards equation in the retrieving
algorithm, according to different initial guess of the parameters, observation depths,
assimilation frequencies as well as the type of near-surface observations (h or θ).

2 Methods5

2.1 The dual Kalman filter formulation

The dual KF equations are the result of a concatenation of the state and parameter
KF equations. Both hidden system states xk , and model parameters w k , with initial
probability density p(xk) and p(w k), respectively, evolve over time tk according to the
conditional probability density p(xk |xk−1) and p(w k |w k−1). The observations yk , re-10

sponding to the conditional probability density p(yk |xk , w k), serve to the simultaneous
estimation of x and w . A separate state-space representation is used for the signal
and the weights. At every time step, the current estimate of the weights is used in the
signal-filter, and the current estimate of the signal-state is used in the weight-filter.

The set of system equations for states can be written as:15

xk = F
(
xk−1, uk−1, v k−1, ŵ k−1

)
(1)

yk = H
(
xk , nk , ŵ k−1

)
. (2)

The set of system equations for parameters can be written as:

w k = w k−1 + rk−1 (3)

yk = H
(
F
(
x̂k−1, uk−1, v k−1, w k−1

)
, nk , w k

)
. (4)20

In the equation above, uk is the exogenous input assumed known, v k is the process
noise that drives the dynamic system through the state transition function F , and nk is
the observation or measurement noise corrupting the observation of the state through
the observation function H . The main problem of a non-standard Kalman filter is to
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calculate the expected mean and variance of a random variable under nonlinear F
and/or H transformations.

The state transition density p(xk |xk−1) is fully specified by F and the process noise
distribution p(v k), whereas H and the observation noise distribution p(nk) fully specify
the observation likelihood p(yk |xk , w k). Both F and/or H are parameterized via the pa-5

rameter vector w k , corresponding to a stationary process with identity state transition
matrix, driven by process noise rk . The upper symbol “” denotes the posterior density
mean of the variable.

Using a generic symbol zk for referring to both states, xk , and parameters, w k , the
posterior density mean and covariance of these variables, ẑk and Pzk , respectively, can10

be calculated according to the Kalman approach as:

ẑk =
(
prediction of ẑk

)
+ Kz

k (yk − (prediction of yk)) =
(
ẑ
−
k

)
+ Kz

k

(
yk − ŷ

−
k

)
(5)

Pzk = P−
zk

− Kz
k Pz

yk

(
Kz
k

)T
(6)

where the Kalman gain Kz
k is calculated according to:

Kz
k = Pzkyk

(
Pz
ỹk

)−1
. (7)15

The variables ẑ
−
k and P−

zk represents the optimal prediction (prior mean at time tk) of
zk and Pzk . The optimal gain term Kz

k is expressed as a function of the expected cross-
covariance matrix of the process prediction error and the observation prediction error,
Pzkyk , and the expected auto-covariance matrix of the observation prediction error, Pz

ỹk
.

2.1.1 SKF algorithm for state retrieval20

The standard algorithm for the states retrieving is structured according to the following
three steps.

13334

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/13329/2012/hessd-9-13329-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/13329/2012/hessd-9-13329-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
9, 13329–13372, 2012

Part 2: A dual filter
approach for
simultaneous

retrieval of states

H. Medina et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Initialization:

x̂0 = E
[
x0
]

(8)

Px0
= E

[(
x0 − x̂0

) (
x0 − x̂0

)T ]
(9)

Rv0
= E

[(
v 0 − v 0

) (
v 0 − v 0

)T ]
(10)

Rn0
= E

[(
n0 − n0

) (
n0 −n0

)T ]
(11)5

where Rv denotes the auto covariance matrix of the process noise, while Rn the auto
covariance matrix of the observation noise.

Prediction step by computing the state mean and covariance, within each time-step
k:

x̂
−
k = F

(
x̂k−1, uk−1, v k−1, ŵ k−1

)
(12)10

P−
xk

= FPxk−1
FT + FRv FT (13)

where Rv is the auto covariance matrix of the process noise, and the model operator
F in Eq. (12) is linear and thus is represented by the matrix F.

Correction step for updating estimates with the last observation:

Kx
k = P−

xk
HT
xk

(
Hxk P−

xk
HT
xk

+ Hxk Rn HT
xk

)−1
(14)15

x̂k =
(
x̂
−
k

)
+ Kk

(
yk − H

(
x̂
−
k , n

))
. (15)

Equations (14) and (15) assume that measurement operator H in Eq. (2) is linear and
thus is represented by the matrix H. The linearity or nonlinearity is conditioned in prin-
ciple to the relationship between the type of assimilated data and the form of the state
equation, as discussed later in this paper. For a nonlinear H , a non-standard KF exten-20

sion would be necessary.
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2.1.2 UKF algorithm for parameter retrieval

From an optimization perspective, the Kalman filter parameter estimation looks for min-
imizing the following prediction-error cost:

J =
k∑

t=1

(
yt − ŷ

−
t

)T (Ret

)−1 (
yt − ŷ

−
t

)
(16)

where Re an artificial noise parameter covariance.5

In the UKF, the distribution of the parameters, as in the more known Extended
Kalman Filter, is still represented by a Gaussian random variable, but it is specified
by a minimal set of deterministically chosen sample points. Sample points selection
strategy is finalized to capture the true mean and covariance of the variable and, after
being propagated through the true nonlinear system, to capture the posterior mean10

and covariance with a second order accuracy for any nonlinearity, with errors only in-
troduced in the third and higher orders.

Considering w and Pw as mean and covariance, respectively, of the parameter vec-
tor w to be retrieved, having dimension L, the UKF, in the simpler mode, obtains a set
of 2L+1 points, named sigma points, Si = {µi , W i , i = 1 ... L}, completely capturing15

the actual mean and covariance of the prior random variable w . A selection of sigma
points fulfilling this requirement is defined as follows:

W 0 = w µ(m)
0 = γ−L

γ

W i = w +
(√

γPw

)
i
i = 1, ..., L µ(c)

0 = γ−L
γ +

(
1 − ρ2 + β

)
W i = w −

(√
γPw

)
i
i = L + 1, ..., 2L µ(m)

i = µ(c)
i = 1

2(γ) i = 1, ..., 2L

(17)

where µi are the weights related to the point i , conditioned to
2L∑
i=0

µi = 1. Weight values

for calculating the mean and the covariance are distinguished by the upper indexes20
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m and c, respectively. The other parameters are defined as follows: γ =ρ2(L + κ),
being ρa factor allowing to expand or to shrink the sigma point distribution around the
mean; κ is a scaling parameter; β affects the weights of the points when calculating
the covariance. Details about the proper choice of ρ, β and κcan be found in the work

of van der Merwe (2004). The term
(√

γPw

)
i

is the i -th column (or row) of the root5

square matrix γPw , calculated by Cholesky decomposition (Press et al., 1992).
Given the above sampling strategy, the algorithm for retrieving the dynamic parame-

ter is structured according to the following four steps.
Initialization

ŵ 0 = E [w ] (18)10

Pw0
= E

[(
w − ŵ 0

) (
w − ŵ 0

)T ]
. (19)

Time update equations, within each time-step k

ŵ
−
k = ŵ k−1 (20)

P−
wk

= Pwk−1
+ Rrk−1

(21)

where Rr is the artificial innovation covariance.15

Calculate the sigma points for the measuring update according to:

W k−1 =
[
ŵ k−1 ŵ k−1 +

√
γPk−1 ŵ k−1 −

√
γPk−1

]
. (22)

Measuring update equations

Y k |k−1 = H
(
F
(
x̂k−1, uk−1, v k−1, W k−1

))
. (23)
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The output function is obtained as:

ŷ
−
wk

=
2Lw∑
i=0

µ(m)
i Y z

i ,k |k−1
(24)

Pwk yk
=

2L∑
i=0

µ(c)
i

(
W i ,k |k−1 − ŵ

−
k

) (
Y i ,k |k−1 − ŷ

−
k

)T
(25)

Pỹk =
2L∑
i=0

µ(c)
i

(
Y i ,k |k−1 − ŷ

−
k

) (
Y i ,k |k−1 − ŷ

−
k

)T
+ Rek

(26)

Kw
k = Pwk yk P−1

ỹk
(27)5

ŵ k = ŵ
−
k−1 + Kw

k

(
yk − ŷ

−
k

)
(28)

Pwk
= P−

wk
− Kw

k Pw
ỹk

(
Kw
k

)T
. (29)

Van der Merwe (2000) suggested several options on how to choose the matrix Rr .
Rr as an arbitrary “fixed” diagonal value, which may then be annealed toward zero

as training continues;10

Rrk =
(
λ−1

RLS
− 1
)
Pwk

(30)

where λRLS ∈ (0, 1] is considered a forgetting factor as defined in the recursive least-
squares (RLS) algorithm (Nelson, 2000). This provides for an approximate exponen-
tially decaying weighting on past data;

Rrk = (1 − αRM) Rrk−1
+ αRM KW

k

[
yk − H

(
xk , x̂−

k

)] [
yk − H

(
xk , x̂−

k

)]T (KW
k

)T
(31)15

which is a Robbins-Monro stochastic approximation scheme for estimating the innova-
tions, where αRM ∈ (0, 1].
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Typically, Rr is also constrained to be a diagonal matrix, which implies an indepen-
dence assumption on the parameters.

Re in Eq. (26) is commonly assumed as a constant diagonal matrix, although in
principle some adaptive strategies can be also used (Wan and Nelson, 1997; van der
Merwe, 2004). The effect produced by the parameter covariances on convergence rate5

and parameter tracking performance is discussed later in the study.

3 Application to one-dimensional Richards’ equation

3.1 Governing equation

As in the vast majority of applications in this realm, we describe the vertical move-
ment of water under isothermal conditions in a rigid, homogeneous, variably satu-10

rated porous medium using the Richards equation (Jury et al., 1991). The following
two equations represent the Richards equation in the h-based and in θ-based forms,
respectively:

∂θ
∂t

= C(h)
∂h
∂t

=
∂
[
K (h)

(∂h
∂z − 1

)]
∂z

(32)

∂θ
∂t

=
∂
[
D(θ) ∂θ

∂z − K (θ)
]

∂z
(33)15

where t is time and z is soil depth taken positive downward with z=0 at the top of the
profile, C(h)=∂θ/∂h [1/L] represents the specific water capacity of the soil at pressure
head h obtained by differentiating θ(h), and D(θ)=K (θ)/C(θ) [L2 T−1] represents the
unsaturated diffusivity.

For an efficient numerical solution of the model, it is convenient to describe the20

soil hydraulic properties using closed-form analytical relationships. The following non-
hysteretic van Genuchten-Mualem (VGM) relations (van Genuchten, 1980) are widely
used in soil hydrology:
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θ(h) = θr + θs − θr
[
1 + |αh|n

]−m
(34)

K (θ) = KsS
λ
e

[
1 −
(

1 − S1/m
e

)m]2

(35)

where θs is the saturated soil water content, θr is the residual soil water content,
Se = (θ − θr)/ (θs − θr) is the effective saturation, Ks is the saturated hydraulic con-
ductivity and α [L−1], n (−), m (−) and λ (−) are empirical scale and shape parameters.5

A common assumption, also adopted in this work, is to fix λ=0.5 and pose m=1−1/n.

3.2 Crank-Nicolson finite difference scheme (CN)

Chirico et al. (2012) showed that the efficiency of a KF-based algorithm in retriev-
ing states by assimilating near surface observations is strictly linked to the numerical
scheme employed for differentiating the Richards equation and implemented in the10

dynamic state-space model. According to this study, a standard KF applied upon a lin-
earized Crank-Nicolson (CN) scheme of the Richards equation results more efficient
than an UKF approach under a nonlinear backward Euler algorithm. For intermediate
nodes, the differentiation of Eq. (31) according to the CN scheme leads to the expres-
sion:15 −

K k
i−1/2

2∆zi ∆zu
;
Ck
i

∆tk
+

K k
i−1/2

∆zu
+

K k
i+1/2

∆zl

2∆zi
; −

K k
i+1/2

2∆zi ∆zl


hk+1

i−1

hk+1
i

hk+1
i+1



=

 K k
i−1/2

2∆zi ∆zu
;
Ck
i

∆tj
−

K k
i−1/2

∆zu
+

K k
i+1/2

∆zl

2∆zi
;

K k
i+1/2

2∆zi ∆zl


hk

i−1

hk
i

hk
i+1

 +
K k
i−1 − K k

i+1

2∆zi
(36)
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where subscript i is the node number (increasing downward), superscript k is the time
level, and ∆tk = tk+1 − tk . All nodes, including the top and bottom node, are in the
centre of the soil compartments, with ∆zu = zi − zi−1, ∆zl = zi+1 − zi and ∆zi the com-
partment thickness. The spatial averages of K are calculated as arithmetic means.

Assuming flux boundary conditions, the differential equations at the top and bottom5

nodes respectively are: Ck
1

∆tj
+

K k
1+1/2

2∆z1∆zl
; −

K k
1+1/2

2∆z1∆zl

(hk+1
1

hk+1
2

)

=

 Ck
1

∆tk
−

K k
1+1/2

2∆z1∆zl
;

K k
1+1/2

2∆z1∆zl

(hk
1

hk
2

)
+

Qtop − K k
1+1/2

∆z1
(37)

−
K k
n−1/2

2∆zn∆zu
;
Ck
n

∆tk
+

K k
n−1/2

2∆zn∆zu

(hk+1
n−1

hk+1
n

)

=

 K k
n−1/2

2∆zn∆zu
;
Ck
n

∆tk
−

K k
n−1/2

2∆zn∆zu

(hk
n−1

hk
n

)
+

K k
n−1/2

− Qbot

∆zn
(38)10

being Qtopand Qbot the flux at the top and the bottom of the soil profile.
The analogous differential expressions of the Richards equation in the θ-form

(Eq. 33) can be obtained from Eqs. (36)–(38) by simply removing the soil water ca-
pacity (C) and by substituting h with θ, the hydraulic conductivity (K ) of the dependent
terms with the diffusivity (D), while keeping intact the independent terms on the right-15

hand side.
Notice that these equations can be conveniently written in state-space representation

as:

Ak+1xk+1 = A′
k xk + fk (39)
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where x represents the state vector, either soil moisture or pressure heads in the soil
profile, while A and A′ are tri-diagonal matrices and f a vector of size n. Hence, its
solution does not require a recursive calculation, but it involves the inversion of matrix
A. More explicitly Eq. (37) becomes:

xk+1 = Bk xk + gk (40)5

by making B=A−1 A′ and g=A−1
f .

3.3 Algorithm implementation for state and parameter retrievals

The synthetic study examines the possibility to retrieve either pressure head or soil wa-
ter content as state variable, changing also the type of observed variable with respect
to that retrieved.10

The retrieved parameters are only the parameters of the van Genuchten analytical
model: Ks, α, and n. We assume parameters θs and θr to be known, as they can be
determined with more ease.

Given the marked differences in the range of variation of the VGM parameters, a vari-
able transformation is required to guarantee operational stability. Bounding parameters15

by means of a function of reference values and a variable correction term, ensure a reli-
able behaviour of the model. Considering that wi is the true value of the i -th parameter,
the parameter estimation system makes use of the following variable transformation:

wi = wimin
+
(
wimax

− wimin

)
g (δwi ) (41)

where wmin and wmax represent user-defined nominal values, defining the minimum20

and the maximum values of the parameter, respectively, while the correction term δw,
to be actually the variable under estimation, is expressed as independent terms of one
nonlinear sigmoidal function g(δw). This function g(δw), defined “squashing function”
by van der Merwe (2004), limits the absolute magnitude of the iterative parameter ad-
justment, further preventing the divergence of the parameter estimations. Therefore,25

the parameters are not estimated directly, rather “correction terms” are estimated.
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A preliminary analysis has shown that the approach is not very sensitive to the type
of sigmoidal function and that the following relationship performed well for all of the
circumstances examined:

g (δwi ) =
δwi

2(1 + |δwi |)
+ 0.5. (42)

Notice that lim
δwi→−∞

g (δwi )=0 and lim
δwi→∞

g (δwi )=1, in which case, wi =wimin
and5

wi =wimax
, respectively.

4 Synthetic experimental framework

We explore the performance of the proposed dual Kalman Filter with a synthetic study.
The main advantage of testing the algorithm with a synthetic study is the fact that
by knowing the true system, the results are not overshadowed by other sources of10

uncertainty: a fundamental aspect that is important to address prior evaluating the
algorithm performance with real data, as presented in Medina et al. (2012).

The synthetic study involves the retrieval of states and parameters by assimilating
near-surface observations into the Richards equation, according to three different re-
trieving modes (RM):15

– the h−h retrieving mode, indicating that pressure heads are used both as ob-
served variables and state variables, with the h-based form of the Richards equa-
tion;

– the θ−θ retrieving mode, indicating that soil moisture contents are used both as
observed variables and state variables, with the θ-based form of the Richards20

equation;

– the θ−hretrieving mode, indicating that soil moisture contents are used as the
observed variable while pressure heads are used as state variables, with the h-
based form of the Richards equation.
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We evaluate the performance of the dual KF approach by comparing the retrieved vari-
ables with their synthetic “true” counterparts, which are obtained by means of a simple
model realization with known initial state and input parameters. The observations being
assimilated are the actual synthetic model realization plus a white noise.

The hydraulic properties of the uniform soil column are identified by using the VGM5

parameters reported in the papers by Entekhabi et al. (1994) and Walker et al. (2001):
θsT

=0.54; θrT
=0.2; KsT

=0.00029 cm s−1, αT =0.008 cm−1 and nT =1.8, where the
subscript T indicates the “true” values, i.e. those employed for the synthetic model
realization. However, different boundary conditions have been set so as to make the
synthetic study more representative from a practical perspective:10

– the top boundary condition is the result of a combination of a stochastically gen-
erated daily series plus a constant evaporation rate of 2.35 mm day−1;

– the bottom boundary condition is set by a zero gradient of the soil water pres-
sure head, also known as “free drainage” condition, which also implies that this
condition is affected by the uncertainty attached to hydraulic conductivity.15

The inclusion of a rainfall pattern allows for evaluating the dual filter performance dur-
ing continuous wetting and drying processes taking place in the soil profile. In mathe-
matical terms, it also reduces the state correlations along the profile, thus making the
synthetic study a more representative stress test of the overall retrieving process as
compared with a constant top boundary condition as in Entekhabi et al. (1994) and20

Walker et al. (2001).
Daily rainfall is obtained by stochastically sampling a Poisson probability distribution

of the occurrence of daily events with an exponential distribution of the rainfall depth.
The bar plot in Fig. 1 illustrates the synthetic daily rainfall time-series for a period of
150 days.25

Subsequently, time series of soil water pressure head and soil moisture profiles are
generated for 150 days taking a uniform −50 cm pressure head profile as initial con-
dition. To improve the efficiency of the numerical scheme with respect to the local
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state gradients, we have adopted a heterogeneous discretisation involving 27 nodes,
in a way different from the uniform partition employed by Entekhabi et al. (1994) and
Walker et al. (2001). Figure 1 also shows the time series of the generated pressure
head values at 5 cm depth.

We simulate the assimilation of observed variables at three alternative observation5

depths (OD): 2, 5 and 10 cm. Escorihuela et al. (2010) found 2 cm as the most effective
soil moisture sampling depth by the L-band radiometry. Nevertheless, L-band sensors
receive their signal from approximately the top 5 cm, on average (Kerr, 2007). A depth
of 10 cm represents the maximum observation depth that can be likely explored with
the current technology (Walker, 1999).10

We also examine three alternative assimilation frequencies (AF): 1, 1/3 and
1/5 days−1. Daily assimilation frequency accounts for future L-band missions or to a
combination of different sensors, whilst 3 days is the minimum time-interval of SMOS
spaceborne platforms (Montzka et al., 2001). One observation every 5 days represents
a more common remote sensing time frequency. Table 1 summarizes the values of the15

main parameters and initial conditions taking part in the retrieving algorithms herein
applied.

The initial soil moisture profile for the θ-based retrieving algorithm is derived by ap-
plying the VGM water retention relation to the initial pressure head profile chosen for
the h-based retrieving algorithm. A similar approach has been adopted for setting the20

initial state covariance in the θ-based form.
The initial covariance matrices are considered diagonal for all cases. The initial state

covariance matrix in h-form is defined as 103 cm2 on the diagonal elements (ten times
the initial state), representing a sufficiently high error in the initial pressure head profile
with no correlation between nodes. The initial matrix of the normalized correction terms25

associated to the soil hydraulic parameters is set to 0.01 on the diagonal elements,
following Nelson (2000).

The observation noise variance is updated as a diagonal matrix and set equal to 2 %
of the absolute observed state vector, following Entekhabi et al. (1994) and Walker et
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al. (2001). Similarly, the system noise covariance is set to 5 % of the profile state vector,
as also done by Entekhabi et al. (1994). For this variable, Walker et al. (2001) opted for
a more conservative 5 % of the change in the system state vector.

We also considered six very dissimilar sets of initial values for the parameters Ks, α,
and n so as to evaluate the role exerted by different initial guesses on the performance5

of the retrieving process. These initial values have been identified by employing the six
possible permutations of the values −1, 0 and 1 as correction terms δwi in Eq. (40), and
subsequently in Eq. (39). Table 2 shows the resulting initial values of the parameters
and the corresponding wmin and wmax −wmin.

For quantitatively evaluating the performance of the retrieving algorithms, the nor-10

malized mean error (ME) and the root mean square (RMSE) between predicted and
synthetic data (SD) state profiles are calculated as follows:

MEj =
1

σSD

Nnod∑
i=1

(
xp
i ,j −xSD

i ,j

)/
Nnod

 (43)

RMSEj =

√√√√√ 1
σSD

Nnod∑
i=1

(
xp
i ,j − xSD

i ,j

)2
/ (Nnod −1)

 (44)

where xp
i ,j and xSD

i ,j represent the predicted and SD state value at node i and time j ,15

respectively, and σSD is the standard deviation of the SD state series. The normalization
is carried out for enabling the comparisons between θ-based and h-based retrieving
processes.
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5 Results

5.1 Stability of the retrieving algorithms

As part of this synthetic study, we evaluate the retrieving algorithm when alternatively
using the h-based or the θ-based form of the Richards equation. An important as-
pect, also addressed by Walker et al. (2001), concerns the stability issues attached5

to these two alternative formulations. A first problem, encountered when retrieving the
pressure heads, is a failure of the algorithms due to relatively abrupt changes in the
state variable. To cope with this problem, we apply a log-transformation to the pressure
head values, thus reducing the relative differences between near-surface observations
and model predictions. Nonetheless, despite this variable log-transformation, several10

retrieving exercises still failed, in particular when sharp pressure gradients are estab-
lished after approximately 110 days of simulation. This failure is more frequent when
near-surface observations are assimilated every day than every three or five days. In
fact, the probability of abrupt state changes increases as the observation frequency
increases.15

Another important factor yielding possible failures is the irreversible deformation of
the correlation structure between parameters, when parameter updates sample limit
values of the corresponding admissible ranges. Notice that the derivative of the sig-
moidal function used in the parameter transformation (Eq. 42) tends to zero when the
independent variable tends to ∞ and −∞. In practical terms, it means that the sig-20

moidal function becomes insensible to further updates and therefore can diverge. This
issue, more frequently found with larger time intervals between the assimilated obser-
vations, is in turn connected to certain parameter initialization as shown later.

In the h-based form, difficulties have been found in tuning the covariance matrices in
order to get a considerable number of safe simulations for the entire period of 150 days.25

The variation of the initialisation conditions, including the initial parameter values, usu-
ally demands to retouch the parameter covariance matrices for sake of stability. How-
ever, provided that the algorithm is stable, the results are not particularly sensitive to
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the actual chosen covariance values. The specific role of these covariance matrices is
also illustrated later.

On the contrary, the retrieving algorithm using soil moisture as state variable is per-
manently stable. As stated by Walker et al. (2001), the soil moisture transformation
not only reduces the differences between model predictions and observations, but also5

smoothes the nonlinearities along the soil profile. Parameter covariance matrices do
not need to be adjusted when initialisation values are changed. These results are per-
ceived as a significant advantage of the θ-form as compared with the h-form.

5.2 Parameter identifiability

Figure 2 illustrates the retrieved parameters Ks, α and n from daily assimilations using10

both, the h−h and θ-form retrieving modes. These graphs depict the evolving patterns
with the three alternative observation depths (OD=2, 5 and 10 cm).

The “true” value of α is rapidly identified during the retrieving process, independently
from the retrieving mode. Parameter α is also the least affected by the initial guess
of the parameters under scrutiny, especially when using pressure heads as state vari-15

ables. Indeed, parameter α acts as a scaling factor of the state values in the soil hy-
draulic property functions, thus its retrieval is highly sensitive to the convergence rate
of the first moment of the state vector. Vrugt et al. (2001, 2002) found that most of the
information on α is embedded in soil water content observations just beyond the air
entry value of the soil. Accordingly, in the present study, the identifiability of α is prob-20

ably favoured by the relatively wet states explored in the initial stage of the synthetic
experiment.

The identifiability of parameter α is seemingly also related to the relative position of
the observations in the soil profile, depending on the type of simulated process. Ritter
et al. (2004) performed a sensitivity analysis of three state variables (soil moisture,25

pressure head and bottom flux) to the VGM parameters using a soil profile with four
soil horizons and found that the average sensitivity of α was higher than that of n
by about a factor of 2, particularly for the uppermost horizon. For the deeper horizons,
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instead, the sensitivity to n was almost three times higher. This is an interesting aspect,
particularly for the issues related to near-surface observations.

Persistent failures occur when taking the initial parameter set S3 with all three ob-
servation depths, and when taking S6 with 5 and 10 cm observation depths, as shown
by the anomalous or truncated evolving values. These failures are associated to a rel-5

atively abrupt decrease in pressure heads after about 110 days from the start of the
simulation runs.

It is important to keep in mind the sequential and Bayesian nature of the dual filter
approach, together with the limited variability of the successive surface observations
being assimilated. Several authors evidenced the limitations for a successful estima-10

tion of VGM parameters, as imposed by the narrow variability of naturally occurring
boundary conditions (Scharnagl et al., 2011; Vrugt et al., 2001, 2002). A wide range of
soil moisture states in required to reliably constraining the soil hydraulic functions.

Unlike parameter α, the saturated hydraulic conductivity, Ks, is identified with much
more difficulty. This can be due in part to the fact that the water retention parameters15

also feature in the hydraulic conductivity function, thus enhancing the occurrence of
high correlations among the model parameters. A strong correlation is found between
retrieved parameters n and Ks. It is known that this strong interdependence also affects
the performance of the VGM model. Especially for certain soil types, Romano and San-
tini (1999) showed that decoupling the hydraulic conductivity function from the water20

retention function can lead to more successful inverse modelling results. As a strategy
to reduce the relative uncertainty, Scharnagl et al. (2011) suggested that the parameter
Ks should be assessed soon after the rainfall events, when soil moisture redistributes
more rapidly in the entire soil profile, being essentially driven by gravity.

The convergence and tracking process of n depend more upon the assimilation25

mode. In the h-form, sensible differences can be observed between the evolving pat-
terns whether one assumes n<2 or n>2 as initial guess. The convergence toward the
true n is more delayed as compared with α. In some cases, convergence fails for n>2,
particularly for n=2.6, which is the highest initial guess value explored in this study.
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This situation has been encountered in complementary analyses (not included here for
the sake of brevity), when soil water profiles assume values that are near to saturation
conditions. A closer inspection of the results depicted in Figs. 1 and 2 reveals that an
abrupt reduction in soil moisture yields a rapid convergence of n, although it can also
induce a failure in the retrieval algorithm. As shown by Vrugt et al. (2001, 2002), most5

of the information on n is embedded in observations whose pressure heads are located
well beyond the inflection point of the soil water retention function. This behaviour is
chiefly attributed to the change of the shape of the water capacity function, C(h), and
the hydraulic conductivity, K (h), when n changes from n<2 to n>2 near saturation.
As addressed by Vogel et al. (2001), the slopes of these two functions change from10

−∞ for C(h) and ∞ for K (h) when n<2 to some non-zero finite values when n=2,
and to zero when n>2. This can be appreciated in Fig. 3, which shows the hydraulic
functions C(h), K (h) and D(θ) near saturation using the true parameter values as a
function of parameter n.

The parameter estimation using the Unscented Kalman Filter, similar to the EKF, can15

be interpreted as a modified-Newton optimization method, which performs an approxi-
mate search over the surface of the squared-prediction-error cost (Nelson, 2000). The
anomalies in the concavity of these curves are reflected as changes in the gradient of
the cost-function. Romano and Santini (1999) observed that the smaller the values of
the retention parameters α and n, the higher the curvature of the response surfaces20

and thus suggested to choose a first guess vector of the parameters by keeping α and
n close to their minimum.

Instead, the identifiability of parameter n in the θ−θ retrieving mode has been found
always stable, independently from the input value of n. Retrieving θ values instead of h
values improves the identifiability of n, at the cost of a light detriment of the identifiability25

of α. As an opposite trend with respect to the h−h retrieving mode, it is possible to
appreciate that the indentifiability with initial n>2 improves with respect to that with
initial n<2 during the initial stage of the simulated process, characterised by high soil
water content values.
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This result reinforces the feeling that, when n is around 2, the observed convergence
patterns are significantly influenced by the shape of C(h), K (h), and (in the θ-based
form) their functional ratio D(θ). Figure 3 also highlights the relative differences be-
tween the concavity pattern of the water diffusivity D(θ) (Fig. 3c) with respect to that of
water capacity C(h) and the hydraulic conductivity K (h) (Fig. 3a and b) when parame-5

ter n approaches the value of 2. Unlike functions C(h) and K (h), the diffusivity function
D(θ) is not affected by a change of concavity, thus making the convergence in the wet
range easier.

Finally, also encouraging is the fact that even for the decreasing resolution of the
observations in space and time, the dual approach is able to found a set of parameters10

that suitably mimics the evolving state profiles. With the aim of illustrating the maximum
expected inaccuracy, Fig. 4 depicts the retrieved parameters using the lowest resolution
considered, i.e. OD=2 cm and AF=1/5 days−1, using both the h−h and the θ−θ
retrieving modes.

5.3 State retrieving15

The results concerning the state identification are also encouraging. Figure 5 shows the
retrieved states using the h−h and θ−θ retrieving modes after 5, 10, 20, 50, 100 and
150 days, considering the minimum assimilation frequency of near-surface observa-
tions (AF=1/5 days−1). Pressure head profiles corresponding to the initial parameter
set S6 are excluded from the results due to persistent failures.20

The soil moisture retrieval clearly outperforms the analogous pressure head retriev-
ing using the lowest temporal and spatial resolution of the observations. Nevertheless,
as shown later, the average RSME using pressure heads is generally lower. The evolv-
ing pressure head profiles S4 and S5 using AF=1/5 days−1 are permanently biased.
This result reflects the abnormal pattern of the evolving retrieved parameters associ-25

ated with these two sets (Fig. 4a), both characterized by an initial guess n>2.
Instead, the performance of the soil moisture retrieving is consistently high with all

sets of parameters. At the 50th day, there is already a very good match between the
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whole guess profiles and the SD ones, despite the high vertical variability. Figure 5j,
showing the temporal evolving of the soil moisture ME and RSME for the entire sit-
uations, provides additional insights about the stability and consistency of the θ-form
algorithm. Both statistics show a plain trend to zero in all cases. Nevertheless, transient
differences are also notable. In particular, it is notable the relatively high ME and RMSE5

using the lowest assimilation frequencies with respect to daily assimilations.
For better illustrating this statement, Fig. 6 depicts the ratios of the mean RMSE

within each group of parameter set computed at the 150th day for different observa-
tion depths and assimilation frequencies. The RSME is almost insensitive to increas-
ing observation depths from OD=2 cm to OD=5 cm, and just slightly affected by the10

change from OD=5 cm to OD=10 cm (Fig. 7). Whilst, the RMSE by assimilating one
observation every three days is approximately twice that corresponding to daily as-
similations as average, independently from the observation depths (see Fig. 7b). In-
stead, the final RSME assimilating every five days is slightly smaller than the RMSE for
AF=1/3 days−1. These trends have been observed also in the h-form, except for the15

cases with initial sets S4 and S5 using AF=1/5 days−1, i.e. those affected by anomalies
during parameter retrieving.

The ratio of the mean RMSE values computed with the θ−θ retrieving mode to
those obtained with the h−h mode is about 1.8, roughly independent from all factors
examined for the initialization and the implementation of the retrieving algorithm. The20

convergence of the predicted pressure head profiles to the SD ones is also clearly
faster than the predicted soil moisture profiles. This seems to be linked to the higher
resolution with which the differences between observations and predictions are repre-
sented in the h-form. This could be also due to the not perfect symmetry between the
implementation strategies adopted for the retrieving algorithms in the θ−θ and in the25

h−h modes, as for example when assuming a 5 % of the state value as state noise
covariance.

Table 3 resumes ME and RMSE values at the 150th day for all examined cases.
Blank cells correspond to failed simulations.
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5.4 Influence of the type observed variables with respect to the selected state
variables

The previous analyses have been focused on the performance involving the h−h and
θ−θretrieving modes, i.e. when the observed and the retrieved variables are of the
same type. This allows for the implementation of a linear observation equation (Eq. 2),5

with a standard KF for states retrieving. Nevertheless, part of the study has been also
focused on the relation between the type of assimilated data and the h-form or θ-form
of the state equation.

In principle, the numerical algorithm can be structured to assimilate soil moisture
observations (or some information linked to it) in the h-form of the Richard equation,10

by dealing with a nonlinear observation equation, referred above as the θ−h retrieving
mode. This issue can be frequent, given the structure of many widely used simulation
models as well as the type of information provided by current remote sensing tech-
niques and ground-based sensors.

To this point, it is important to note that the inversion of the observation variable,15

i.e. converting soil moistures to pressure heads by means of a water retention function
with guessed (wrong) parameters, would be a severe mistake because the observa-
tions would significantly biased, incorporating an unpredictable error in the retrieving
algorithm. Differently, a nonlinear relationship for transforming an exogenous obser-
vation variable (as for example soil surface temperature from thermal infrared remote20

sensing) in soil moisture, can be directly employed prior applying the observation op-
erator H in Eq. (2).

The effect of dealing with a nonlinear observation operator within the retrieving algo-
rithm is illustrated in Fig. 8. Figure 8a shows the retrieved parameters using an hourly
assimilation frequency, from the h−h retrieving mode. Figure 8b shows the analogous25

results, but now with the θ−h retrieving mode, assimilating the equivalent soil mois-
ture observations obtained by simple inversion of the soil water retention curve. In this
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case, the unscented algorithm is also employed for the statistical linearization of the
now nonlinear operator H, similarly to what is done for retrieving the parameters.

Such linearization clearly incorporates a significant amount of errors, which affects
sensibly the overall identifiability of the unknown parameters. Note that even the identi-
fiability of parameter α is severely affected by using this strategy. With low assimilation5

frequencies the algorithm is subjected to the persistent failures.
These results sustain that the state variable and observation variable should be al-

ways of the same type, either in the h-form or in θ-form, to avoid the need of linearizing
the observation equation (Eq. 2) with respect to the states.

Finally, it is useful to see that in an Extended Kalman filter framework, the non zero10

elements of the linearized observation operator H would correspond to the hydraulic
capacities C(h), evaluated in the prior states values x̂

−
k , at the observation nodes. This

provides an idea of the unpredictability of the uncertainty attached to the linearization
process, as this is strongly influenced by the soil properties.

5.5 Influence of the initial covariance matrices15

The dual KF algorithm, as their analogous approaches, requires initial values for the
signal-state covariance, Px, and the weight covariance, Pw . The effect of the initial state
covariance matrix Px, or the noise covariance matrices Rv and Rn on the assimilation
scheme is straightforward and has been widely examined (see for example Walker,
1999; Nelson, 2000). The reasonable values for the initial parameter covariance Pw20

and the artificial noise covariances Rr and Re., are less clear and involves several
factors (Nelson, 2000).

As stated by Nelson (2000), Re acts as a scaling term, determining the relative influ-
ence of the initial covariance Pw0

on later covariance matrices Pwk
. For a prefixed Pw0

,
a large Re produces more stable (lower variance) behaviour, but this produces signif-25

icantly biased estimates w k for small times k. A very small Re exposes the algorithm
to retrieve parameters toward the corresponding limiting values, mining its stability and
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convergence. Notice that this problem is not avoided by simply broaden the allowed
parameter range.

An initial value Pw0
=10−2 for the diagonal elements performed well for most of the

cases, both with soil moisture and pressure heads as state variables, as found by Nel-
son (2000) who also employed normalized parameterisation. Once the normalized Pw5

is fixed, the value of Re strongly depends on the variance of the data, and hence,
of the state variable. When retrieving soil moistures, Re has been set to 10−5, while
when using log-transformed pressure heads, its value has been always tuned accord-
ing to the specific conditions for avoiding failures, with values ranging from 10−5 to
10−3. Nevertheless, using the normal (not log-transformed) h-form within our comple-10

mentary analyses, Re =0.5 has been found as appropriate for many applications. In
general, the higher the variability of the involved retrieved variable, higher Re values
are required. In any case, the selection of proper Re deserves more attention in fur-
ther studies, because it seems a determinant stability factor, particularly when using
pressure heads.15

The prediction error covariance Rr is also a key variable, having effects in parameter
retrieving for longer time intervals. It artificially determines the amount of error incor-
porated in the parameter covariance matrix, and then it is decisive in convergence and
tracking. When comparing the possible options provided by van de Merwe (2004) from
Eqs. (21) and (22), only the exponentially decay weighting (by using the “forgetting20

factor”) has been always performing fairly well.
As found by Nelson (2000), a value around λRLS =0.9999 (see Eq. 30) produces

good results using soil moisture and transformed pressure heads. For the standard h-
form, λRLS =0.995 is appreciated as a fair value. The Robbins-Monro approach tends
to add too noise to the parameter covariance during the synthetic analyses, principally25

under the h-form, even collapsing the simulations. According to Evans et al. (2005), the
stochastic gradient algorithms are not scale invariant, and thus the resulting estimates
are affected by the units choice.
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Ultimately, the choice of a suitable updating strategy is also seen as an important
point for future research.

6 Conclusions

Based on the synthetic analyses herein presented, a dual Kalman filter approach
seems suitable for simultaneous retrieving of soil moisture (or pressure head) profiles5

and the soil hydraulic parameters by assimilating near surface soil moisture informa-
tion. The proposed approach takes the advantages on the linearization of the numerical
algorithm of the Richards equation for a straightforward retrieving of the states, and the
virtues of the unscented approach for parameter retrieving within a nonlinear frame-
work.10

The results demonstrated the efficiency of the unscented approach in linearizing the
model with respect to the parameters, without the need to perform any analytical differ-
entiation. This represents a very helpful aspect considering the fact that a transforming
equation of unknown parameters could be required between the retrieved parameters
and the state space model. The unscented strategy makes the computational imple-15

mentation very simple and of general applicability, i.e. independent from the analytic
equations employed.

The assimilation of near surface soil moisture observations recalls some considera-
tions about the sensitivity to the VGM parameters, at least when the system is initialized
with wet conditions. The indentifiability of parameter α is markedly higher than that of20

n, particularly when using pressure head as retrieving variable. Instead the identifiabil-
ity of the saturated hydraulic conductivity is in all cases very poor. This fact, joined with
the strong correlation observed between retrieved n and Ks, suggests the opportunity
to employ other analytical models, representing the hydraulic conductivity decoupled
from the retention function.25

An encouraging finding is that the dual Kalman Filter approach is able to find a
parametric solution while retrieving states closed to the true values, even for lightest
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near-surface observations, i.e. using observation depths of 2 cm and assimilation fre-
quency of one every five days. The comparison between parameter initialization, ob-
servation depth and assimilation frequency evidenced that the latter has the most dom-
inant effect on the evolving errors. The temporal patterns of ME and RMSE values are
in particular sensitive to the assimilation frequency, with increasing values from daily to5

once every three days.
The problem associated to adopting either the h-form or θ-form of the Richards equa-

tion in the dual Kalman Filter algorithm has been explored. A fundamental drawback
associated with retrieving pressure heads is the low algorithm stability, being highly
vulnerable to several physical and mathematical issues. Whilst, the θ-form is appre-10

ciated as very stable and efficient to deal with unsaturated conditions within the dual
retrieving process. Nevertheless, being stable, the pressure heads retrieving algorithm
outperformed that using soil moisture in terms of state convergence and final accuracy.

Finally, by examining different combinations of retrieved and assimilated variables,
the study definitively demonstrates the several edges behind the efficiency of the dual15

Kalman Filter approach, beside the Kalman Filter extension per se. The present study
sustains the convenience of retrieving state variable of the same type of the observation
variable, as this permits to employ a linear observation equation. The performance of
the overall retrieving process is significantly dampened when using an algorithm based
on the assimilation of soil moisture as observation variable and pressure head as the20

retrieving variable, even with observations assimilated hourly.
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Table 1. Main parameters and initial conditions employed in the retrieving algorithm.

Input variable Synthetic data (SD)

Pressure head retrieving Soil moisture retrieving

Initial state variable −100 cm 0.47 cm3 cm−3∗

Observation depths (OD) 2, 5 and 10 cm 2, 5, 10 cm

Assimilation frequency (AF) Every 1 and 5 days Every 1 and 5 days

Initial state covariance matrix 103 cm2 0.8 cm6 cm−6∗

Px
i ,i ; i = 1 ... Nnod

Initial normalized correction 0.01 0.01
terms matrix
Pw
i ,i ; i = 1 ... Npar

Process-noise updating 0.05xi cm2 0.05xi cm6 cm−6

Rvi ,i
; i = 1 ... Nnod

Observation noise updating 0.02y i cm2 0.02y i cm6 cm−6

Rni ,i
; i = 1 ... Nobs

Nnod is the number of nodes (states); Npar is the number of parameters under scrutiny; Nobs, is the number
of observations; x and y represent the state and the observation vectors, respectively. ∗ Obtained by
transforming the corresponding pressure head condition by means of the true soil water retention function.
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Table 2. Values of wmin and wmax −wmin, used to constrain the distribution of the parameters Ks,
α and n, and the resulting six sets of input values considered during the assimilation process.

Parameter wmin wmax −wmin S1 S2 S3 S4 S5 S6

Ks (cm s−1) 1×10−5 6×10−4 4.6×10−4 4.6×10−4 3.1×10−4 3.1×10−4 1.6×10−4 1.6×10−4

α (cm−1) 1×10−3 5×10−2 2.6×10−2 1.35×10−2 3.85×10−2 1.35×10−2 2.6×10−2 3.85×10−2

n (−) 1.1 2.0 1.6 2.1 1.6 2.6 2.6 2.1
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Table 3. Mean error (ME) and RMSE (RMSE) between retrieved pressure head and soil mois-
ture profiles and the true ones, involving the six sets of initial parameters (S1-S6), the three ob-
servation depths, (OD=2, 5 and 10 cm) and the three assimilation frequencies (AF=1 day−1,
1/3 days−1 and 1/5 days−1).

Retrieving pressure heads Retrieving soil moistures

OD=2 cm OD=5 cm OD=10 cm OD=2 cm OD=5cm OD=10cm

AF Set ME RMSE ME RMSE ME RMSE ME RMSE ME RMSE ME RMSE

1 day−1

S1 0.0168 0.0312 0.0397 0.0488 0.0493 0.0569 0.0138 0.0232 0.0123 0.0171 0.0076 0.0131
S2 0.0064 0.0154 0.0268 0.0314 0.0359 0.0424 −0.0920 0.1003 −0.0921 0.1072 −0.0587 0.0787
S3 0.0560 0.0681 0.0412 0.0481 0.0225 0.0269
S4 −0.0051 0.0098 −0.0271 0.0632 −0.0221 0.0599 0.0050 0.0190 0.0312 0.0387 0.0440 0.0539
S5 −0.0230 0.0591 −0.0242 0.0376 0.0136 0.0192 0.0831 0.0922 0.0773 0.0863 0.0560 0.0664
S6 0.0606 0.1046 0.0556 0.0653 0.0402 0.0459 0.0220 0.0270

1/3 day−1

S1 0.0538 0.0655 0.0539 0.0663 0.0595 0.0719 0.0547 0.0706 0.0388 0.0499 0.0216 0.0289
S2 0.0396 0.0466 0.0339 0.0400 0.0366 0.0438 −0.0465 0.0788 −0.0551 0.0979 −0.0342 0.0870
S3 0.0656 0.0818 0.0622 0.0776 0.0649 0.0795 0.1044 0.1376 0.0773 0.1043 0.0491 0.0743
S4 0.0502 0.0622 0.0776 0.1755 −0.1056 0.1749 0.0222 0.0333 0.0399 0.0639 0.0316 0.0941
S5 −0.0019 0.0181 0.0600 0.0772 0.0354 0.0424 0.0910 0.1617 0.0752 0.1682 0.0420 0.1567
S6 0.0575 0.0690 0.1073 0.1391 0.0908 0.1214 0.0650 0.1005

1/5 day−1

S1 0.0334 0.0399 0.0256 0.0299 0.0179 0.0237 0.0201 0.0244 0.0199 0.0228 0.0156 0.0200
S2 0.0215 0.0308 0.0181 0.0312 0.0095 0.0261 0.0251 0.0724 0.0024 0.1072 −0.0029 0.1279
S3 0.0342 0.0499 0.0286 0.0347 0.0177 0.0235 −0.0004 0.0817 0.0020 0.0750 −0.0030 0.0684
S4 −0.4244 0.4443 −0.3199 0.3459 −0.0062 0.0331 −0.0187 0.0541 −0.0568 0.1097
S5 −0.2332 0.2595 −0.4683 0.4909 −0.1976 0.2424 −0.0698 0.1483 −0.0905 0.1733 −0.0963 0.1900
S6 −0.0109 0.0922 −0.0016 0.0812 −0.0089 0.0950
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Fig. 1. Rainfall pattern (bar plot) and synthetically generated “true” pressure head values at
5 cm depth (solid line).
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Fig. 2. Retrieved VGM parameters Ks, α and n using the h−h (a)–(c) and the θ−θ (d)–(f) retrieving modes, with
assimilation frequency AF=1 days−1 and observation depth (OD): (a, d) 2 cm; (b, e) 5 cm; (c, f) 10 cm. Comparisons
account for the six pondered sets of initial parameters: S1(©), S2(�), S3(∗), S4(∆), S5(+) and S6(♦). The dotted line
indicates the true value.
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Fig. 4. Retrieved VGM parameters, Ks, α and n using (a) the h−h and (b) the θ−θ retrieving
modes, with assimilation frequency AF=1/5 days−1 and observation depth OD=2 cm. Com-
parisons account for the six pondered sets of initial parameters: S1(©), S2(�), S3(∗), S4(∆),
S5(+) and S6(♦). The dotted line indicates the true value.
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Fig. 5. Retrieved states using the h−h (a)–(f) and θ−θ (g)–(l) modes after 5 (a, g); 10 (b,
h); 20 (c, i); 50 (d, j); 100 (e, k) and 150 (f, l) days, with assimilation frequency AF=1 days−1

and observation depth OD=2 cm. Comparisons account for the six pondered sets of initial
parameters: S1(©), S2(�), S3(∗), S4(∆), S5(+) and S6(♦). The dotted line with solid circles
represents the true profile.
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a)     OD = 2 cm b)    OD = 5 cm c)    OD = 10 cm 

d)     OD = 2 cm e)    OD = 5 cm f)    OD = 10 cm 

g)     OD = 2 cm h)    OD = 5 cm i)    OD = 10 cm 

j)     OD = 2 cm k)    OD = 5 cm l)    OD = 10 cm 

m)     OD = 2 cm n)    OD = 5 cm o)    OD = 10 cm 

p)     OD = 2 cm q)    OD = 5 cm r)    OD = 10 cm 

Fig. 6. Normalized mean error (ME) and root mean square error (RMSE) between guess and true soil moisture
profiles using the θ−θ mode. Assimilation frequency AF – days−1): (a)–(f) 1; (g)–(l) 1/3 and (m)–(r) 1/5. Observation
depth (OD): 2 cm (left column), 5 cm (central column) and 10 cm (right column). Comparisons account for the six
pondered sets of initial parameters: S1(©), S2(�), S3(∗), S4(∆), S5(+) and S6(♦).
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Fig. 7. Ensemble (involving the six parametric sets) of soil moisture RMSE ratios between
contiguously sampled (a) observation nodes (OD) and (b) assimilation frequencies (AF).
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Fig. 8. Retrieved VGM parameters Ks, α and n, using (a) the h−h and (b) θ−h retrieving
modes by assimilating observations every hour, with observation depth OD=10 cm. Compar-
isons account for the six pondered sets of initial parameters: S1(©), S2(�), S3(∗), S4(∆), S5(+)
and S6(♦).
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